Existence of solutions to heat equations with singular lower order terms

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of Solutions to Singular Elliptic Equations with Convection Terms via the Galerkin Method

In this article, we use the Galerkin method to show the existence of solutions for the following elliptic equation with convection term −∆u = h(x, u) + λg(x,∇u) u(x) > 0 in Ω, u = 0 on ∂Ω, where Ω is a bounded domain, λ ≥ 0 is a parameter, h has sublinear and singular terms, and g is a continuous function.

متن کامل

Existence of Solutions to Nonlocal Elliptic Equations with Discontinuous Terms

In this article, we study the existence of nonnegative solutions for the elliptic partial differential equation −[M(‖u‖p1,p)] ∆pu = f(x, u) in Ω, u = 0 on ∂Ω, where Ω ⊂ RN is a bounded smooth domain, f : Ω×R+ → R is a discontinuous nonlinear function.

متن کامل

Microlocal Time Decays for Hyperbolic Equations with Lower Order Terms

In this paper we present microlocalised time-decay rates of solutions to hyperbolic equations with constant coefficients with arbitrary lower order terms. A particular attention is paid to regions with multiplicities. AMS Mathematics Subject Classification (2000): 35L30, 35L45

متن کامل

Existence of Oscillatory Solutions of Singular Nonlinear Differential Equations

and Applied Analysis 3 Consequently, the condition u′ 0 0 1.11 is necessary for each solution of 1.7 . Denote usup sup{u t : t ∈ 0,∞ }. 1.12 Definition 1.2. Let u be a solution of 1.7 . If usup < L, then u is called a damped solution. If a solution u of 1.7 satisfies usup L or usup > L, then we call u a bounding homoclinic solution or an escape solution. These three types of solutions have been...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2014

ISSN: 0022-0396

DOI: 10.1016/j.jde.2014.02.011